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Why focus on graphs?
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Learning problems on graphs

Materials Discovery

Proteomics
.

- Graph classification

- Edge classification

- Node classification

'\z

Transp(jrtation

"/ Particle
Physics




Why not use CNNs?

- Must generalize convolution

[1]1Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” arXiv preprint 4 ~
arXiv:1901.00596, 2019. ﬂ




GNN basics
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GNN training basics

1. Initialize feature vectors in
layer O

2. Sum neighbors’ vectors for
each node

3. Apply weight to vector sums




GNN issues

- GNN models are huge: O(nfL)
» . number of vertices
» f: length of feature vector
» [, number of layers

- Need to distribute GNN training + inference




Why not use mini-batch SGD?
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No dependencies

Layered dependencies

- Layered dependencies - space issue persists

[2] Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. Minimizing Communication in Sparse Matrix Solvers. In 8
Proceedings of the 2009 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis(SC), 2009.




How do we distribute GNN training?

1. Formulate GNN training with sparse-dense matrix multiplication operations
» Both forward and back propagation

2. Distribute with distributed sparse-dense matrix multiplication algorithms

- Focus on node classification, but methods are general
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GNN training as sparse-dense matrix multiplication

Forward Propagation:
7'« ATH'W!
H' « 0(Z")
Backward Propagation:
G AG' (W) oo (2"
vi-1 . (Hl—l)TAGl

- A is stored in sparse format
- All other matrices dense

Symbols and Notations

Symbol Description

A Modified adjacency matrix of graph (nxn)
H! Embedding matrix in layer [ (n x f)

W Weight matrix in layer I (f x f)

Y! Matrix form of 818/[/23, (f x f)

Z! Input matrix to activation function (n x f)
G! Matrix form of 88Z£l (n x f)

o Activation functionJ

f Length of feature vector per vertex

fu Feature vector for vertex u

L Total layers in GNN

P Total number of processes

o Latency

I} Reciprocal bandwidth




GNN training as sparse-dense matrix multiplication

Forward Propagation:
Z' — ATH TV c— S0\ I\, DGEMM
H' « o(Z") —————————— N paper
Backward Propagation:
G AGH (W' ©0'(Z"7) ——SpNM, DGEMM
Yl HHTAG — DGEMM

- Entirely SpMM, DGEMM calls




Bottleneck of GNN training

Zl AT Hl—l Wl
_ SpMM >>> DGEMM
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The computation cube of matrix-matrix multiplication

Matrix multiplication:  V(@j) enxn  C@Gj) =2, A(ik)B(k,)),

— The computation (discrete) cube:
________ ol B __ « Aface for each (input/output) matrix
""""""""""""""""""""""""" / « A grid point for each multiplication

>




GNN training communication analysis

Symbols and Notations

Symbol Description
A Modified adjacency matrix of graph (nxn)
Communication Analyses H' Embedding matrix in layer [ (n X f)
Algorithm Latency Bandwidth Memory w! Weight matrix malgyer L(fxf)
l .
1D lg P+ 2P onf + 2 %@+n_Pf Y Matrix form of =5 (f < f)
ij
1.5D QCEQ lg c£2 % + QanC ”nZJ(DA)C + n}J;C le Input. matrix to aaczivation function (n x f)
G Matrix form of =5 (n X f)
2D 5\/ﬁ+31gp 8nf + 2nnz(A) nnz(A) + nf 8Zz'j
P VP P P o :
ormz(A)  12nf (A) ; Activation function
nnz nnz
3D AP'/? p2/3 T P;;?) 5 + B Length of feature vector per vertex

Feature vector for vertex u
Total layers in GNN

Total number of processes
Latency

Reciprocal bandwidth

@R YT 9

- nnz(A)is the number of edges
- C is the replication factor for 1.5D (¢ =1 is 1D)

BERKELEY
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Implementation Details

- PyTorch 1.3 with NCCL 2.0 backend
» Kipf-Welling model (3-layers, 16 hidden activations)

- System:
» Summit at OLCF
» 6 NVIDIA V100s per node
» NVLINK 2.0, EDR Infiniband

- Datasets: m_mm

Amazon 231M
Reddit 233K 114M 602 41
Protein 8M 2B 128 256




GNN Training with 1.5D Matrix Multiplication
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- Scales with both P and ¢ with 1 GPU/node
» Summit topology
» Full 6GPU/node results in paper
- Expect to scale with all GPUs / node with future architectures




GNN Training with 2D/3D Matrix Multiplication
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- Other algorithms evaluated in practice (with 6GPUs/node)
- Communication scales with P, consistent with analysis
- Computation scales less well - explained in paper




Conclusions

- Graphs are everywhere
» Lots of deep learning problems on graphs

- Can solve DL on graphs with GNNs
» But must distribute training

- Our work

» Can formulate GNN training as sparse-dense matrix multiplications
» Distribute GNN training with distributed SpMM

» Code: https://github.com/PASSIONLab/CAGNET

» Paper: https://arxiv.org/pdf/2005.03300.pdf
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